Show Synopsis

Decision-making in the face of uncertainty is a significant challenge in machine learning, and the multi-armed bandit model is a commonly used framework to address it. This comprehensive and rigorous introduction to the multi-armed bandit problem examines all the major settings, including stochastic, adversarial, and Bayesian frameworks. A focus on both mathematical intuition and carefully worked proofs makes this an excellent reference for established researchers and a helpful resource for graduate students in computer ...

Filter Results
Shipping
Item Condition
Seller Rating
Other Options
Change Currency

Customer Reviews

Write a Review


This item doesn't have extra editions

loading